The word ‘models’ has been used with the Pandemic throughout the world, with over 249 million social media hits in the last three months, yet many of our STEM teachers and students are not readily equipped to reason with these models themselves or teach with them.
In an online symposium July 31, 2020 attended by over 80 scholars in ASEAN countries, Professor Samia Khan introduced “model-based teaching in science education”, its history from science and its connection to science education. The webinar was attended by researchers and students of Kasetsart University, Thailand, Hanoi National University of Education, Vietnam, and Universitas Sultan Ageng Tirtayasa, Indonesia.
Professor Khan also discussed recent applications of this approach in a course on preservice science teacher education with technology.
The mii-STEM international research team presented the mii-STEM “Model-based Integrated Inquiry STEM” research program which focuses on model-based teaching and inquiry for STEM teacher education.
A panel discussion addressed questions around challenges of implementing STEM, advantages and disadvantages of model-based teaching, and the limitations of models.
My name is Xuan and I am a third-year student at the Faculty of Physics, Hanoi National University of Education, in Vietnam. I would like to share my thoughts and experiences of the MII-STEM course, which is a collaboration between the University of Dundee in Scotland and three Universities in Southeast Asia countries: Vietnam, Indonesia, and Thailand.
First of all, I would like to express my most sincere thanks to Dr. Nguyen Van Bien, who has given me and the other students an excellent opportunity to get closer to STEM education.
Before starting the MII-STEM course, I simply understood STEM as an integrated teaching model for Math, Science, Technology, and Engineering. I am aware that STEM education is a hot and new trend in Vietnam, and teachers need to educate themselves about this teaching method.
During the MII-STEM course, I learned a lot of things and really deepened my understanding of the content. As well as theoretical learning, we were involved in practical activities, creativity and product design. All the participants in the course made great efforts and were very enthusiastic.
The course faced some disruptions due to the COVID-19 pandemic, which meant that the majority of the classes were taught online.
[huge_it_gallery id=”2″]
Every lesson in the project broadened my understanding of STEM education and model-based teaching, which not only gave me valuable knowledge but also supports me on my path of education in the future.
Thanks to University of Dundee for giving us this opportunity to experience a memorable class.
Nguyen Thi Thanh Xuan
Third-year student
Faculty of Physics
Hanoi National University of Education
These are the two words I would use to describe the implementation of the MII-STEM curriculum at Universitas Sultan Ageng Tirtayasa in Indonesia: exciting and unforgettable.
This comes not only from my observation of pre-service science teachers during implementation and their responses during and after implementation, but also reflects the support of others in the university. This includes the Rector, Vice Rector, Dean of Faculty of Teacher Training and Education, Vice Dean in Academic Affairs, Head of Department of Science Education, Head of Department of Biology Education, Head of Integrated Science Laboratory, Head of Biology Laboratory, Head of Laboratory of Microteaching, and other lecturers and staffs.
All of these people contributed to the successful implementation of the curriculum. It would not have been possible without their help. I want to particularly acknowledge Assoc. Prof. Dr. H. Aceng Hasani, M.Pd. who was Dean of Faculty of Teacher Training and Education at the time, now Vice of Rector 4 of Universitas Sultan Ageng Tirtayasa, who has always supported me from the start of the project.
I implemented the MII-STEM curriculum with the support of my research assistant, Indah Juwita Sari, M.Sc., lecturer at the Department of Biology Education and also alumni of this department. I was also assisted by three pre-service biology teachers, students of Indah Juwita Sari at the university. They helped with the observation of pre-service science teachers’ activities during implementation. So there was a team of four observers collecting data.
We taught the curriculum, a total of 15 lesson plans, in December 2019 to a group of 25 pre-service science teachers. They seemed to enjoy the lessons which they approached with real enthusiasm and curiosity. This was confirmed when I interviewed them after implementation.
The pre-service teachers saw the MII-STEM curriculum as a new teaching strategy, a view that I share, as STEM education in Indonesia is still very new. We all enjoyed being part of an international project, knowing that curriculum was developed by researchers from four countries – Scotland, Indonesia, Vietnam, and Thailand.
I would like to thank Professor Samia Khan, Ph.D. from the University of Dundee, Assoc. Prof. Dr. Nguyen Van Bien from Hanoi National University of Education, Vietnam, and Assoc. Prof. Chatree Faikhamta, Ph.D. from Kasetsart University, Thailand, who gave me this opportunity to part of this international research collaboration “Science education in Southeast Asia: Teacher Training for Quality Education in STEM”. I would also like to thank all the research assistants in this project and to Karis McLaughlin who provides communications and project support.
Finally, let’s enjoy the video we made about MII-STEM implementation in Indonesia!
R. Ahmad Zaky El Islami
Universitas Sultan Ageng Tirtayasa, Indonesia
On 3-7 June 2020, the lead researchers of the project convened at the University of Dundee, Scotland, for week-long meeting to kick start the MII-STEM project.
Professor Samia Khan, presently at the University of British Columbia, was joined by R. Ahmad Zaky El Islami from Universitas Sultan Ageng Tirtayasa in Indonesia, Dr Chatree Faikhamta from Kasetsart University in Thailand, and Dr Nguyen Van Bien from Hanoi National University of Education in Vietnam.
The team presented country profiles of Scotland, Indonesia, Thailand and Vietnam, summarising information about their country context, the secondary science curriculum, science teacher education, and the policy drivers for STEM and science education.
The researchers compared and contrasted the secondary school science curricula and the science teacher education programs in each country.
They also began sharing ideas and planning the MII-STEM curriculum – a teachers training course to focus on modelling in STEM.