MII-STEM supports me on my future path of education

My name is Xuan and I am a third-year student at the Faculty of Physics, Hanoi National University of Education, in Vietnam. I would like to share my thoughts and experiences of the MII-STEM course, which is a collaboration between the University of Dundee in Scotland and three Universities in Southeast Asia countries: Vietnam, Indonesia, and Thailand.

First of all, I would like to express my most sincere thanks to Dr. Nguyen Van Bien, who has given me and the other students an excellent opportunity to get closer to STEM education.

Before starting the MII-STEM course, I simply understood STEM as an integrated teaching model for Math, Science, Technology, and Engineering. I am aware that STEM education is a hot and new trend in Vietnam, and teachers need to educate themselves about this teaching method.

During the MII-STEM course, I learned a lot of things and really deepened my understanding of the content. As well as theoretical learning, we were involved in practical activities, creativity and product design. All the participants in the course made great efforts and were very enthusiastic.

The course faced some disruptions due to the COVID-19 pandemic, which meant that the majority of the classes were taught online.

Online MII-STEM class
Online MII-STEM class

 


Every lesson in the project broadened my understanding of STEM education and model-based teaching, which not only gave me valuable knowledge but also supports me on my path of education in the future.

Thanks to University of Dundee for giving us this opportunity to experience a memorable class.

The MII-STEM class

Nguyen Thi Thanh Xuan
Third-year student
Faculty of Physics
Hanoi National University of Education

 

Modelling can be used to foster student learning in science

I have a long-standing interest in modelling, with prior experience teaching Chemistry (atomic structure) at a high school in Taiwan high school.

Around that time I became aware of a research project “exploring modelling integrated analogy-based teaching on students’ conceptual understanding and modelling competencies” which had a positive outcome on students’ performance. This research added to the ongoing conversation about model-based learning and science teaching, and sparked my interest in the topic.

I have also been engaged in STEM curriculum at different educational levels (see photos below), which has enriched my knowledge of STEM education.

Because of these empirical studies, I know that models and modelling can be used to foster student learning in science.

With integrated STEM education constantly evolving, more research is needed on how modelling can be developed to meaningfully link the STEM disciplines.

The MII-STEM project adds to this body of work by providing an in-depth look at modelling as practiced in Indonesia, Thailand and Vietnam, to inform future STEM educators’ teaching.

Model-based teaching in Chemistry

 

A STEM implication in high school
Students’ STEM project

During the MII-STEM project process, our team revised lesson plans for the MII-STEM curriculum several times. Once a country completed the teaching intervention, a team meeting was organised to discuss and reflect on the issues that arose in the classroom, for example, teaching time, materials and students’ misconceptions of the content.

The MII-STEM lessons include both theory and practical activities. For example, they explore questions such as: What’s the meaning of STEM? What is model-based inquiry? How do future teachers implement model-based inquiry in teaching STEM?

The curriculum includes some classic science activities such as the Black Box, Fruit Battery and Right the Light LEDs. These practical tasks provided students with the opportunity to understand that a phenomenon may be modelled in more than one way. The activities demonstrated different elements of integrated STEM education.

I am enjoying the cooperation process of this project, which not only strengthens the academic communication between the UK and the SouthEast Asian countries, but also provides a valuable STEM curriculum design and practical reference for science educators. It is an important contribution to the development of model-based pedagogies for STEM education classrooms.

Song Xue, 薛松
Ph.D. Student, Science Education
The School of Education and Social Work
The University of Dundee, UK